Explanation of Order by Clause, Group by Clause and Having Clause in Impala

Last updated on May 30 2022
Swati Dogra

Table of Contents

Explanation of Order by Clause, Group by Clause and Having Clause in Impala

Impala – Order By Clause

The Impala ORDER BY clause is employed to sort the data in an ascending or descending order, based on one or more columns. Some databases sort the query results in ascending order by default.

Syntax

Following is the syntax of the ORDER BY clause.

select * from table_name ORDER BY col_name [ASC|DESC] [NULLS FIRST|NULLS LAST]

 

You can arrange the info within the table in ascending or descending order using the keywords ASC or DESC respectively.

In the same way, if we use NULLS FIRST, all the null values within the table are arranged within the top rows; and if we use NULLS LAST, the rows containing null values are going to be arranged last.

Example

Assume we have a table named customers in the database my_db and its contents are as follows −

[quickstart.cloudera:21000] > select * from customers;

Query: select * from customers

+—-+———-+—–+———–+——–+

| id | name     | age | address   | salary |

+—-+———-+—–+———–+——–+

| 3  | kaushik  | 23  | Kota      | 30000  |

| 1  | Ramesh   |  32 | Ahmedabad | 20000  |

| 2  | Khilan   | 25  | Delhi     | 15000  |

| 6  | Komal    | 22  | MP        | 32000  |

| 4  | Chaitali | 25  | Mumbai    | 35000  |

| 5  | Hardik   | 27  | Bhopal    | 40000  |

+—-+———-+—–+———–+——–+

Fetched 6 row(s) in 0.51s

Following is an example of arranging the data in the customers table, in ascending order of their id’s using the order by clause.

[quickstart.cloudera:21000] > Select * from customers ORDER BY id asc;

On executing, the above query produces the following output.

Query: select * from customers ORDER BY id asc

+—-+———-+—–+———–+——–+

| id | name     | age | address   | salary |

+—-+———-+—–+———–+——–+

| 1  | Ramesh   | 32  | Ahmedabad | 20000  |

| 2  | Khilan   | 25  | Delhi     | 15000  |

| 3  | kaushik  | 23  | Kota      | 30000  |

| 4  | Chaitali | 25  | Mumbai    | 35000  |

| 5  | Hardik   | 27  | Bhopal    | 40000  |

| 6  | Komal    | 22  | MP        | 32000  |

+—-+———-+—–+———–+——–+

Fetched 6 row(s) in 0.56s

In the same way, you can arrange the data of customers table in descending order using the order by clause as shown below.

[quickstart.cloudera:21000] > Select * from customers ORDER BY id desc;

On executing, the above query produces the following output.

Query: select * from customers ORDER BY id desc

+—-+———-+—–+———–+——–+

| id | name     | age | address   | salary |

+—-+———-+—–+———–+——–+

| 6  | Komal    | 22  | MP        | 32000  |

| 5  | Hardik   | 27  | Bhopal    | 40000  |

| 4  | Chaitali | 25  | Mumbai    | 35000  |

| 3  | kaushik  | 23  | Kota      | 30000  |

| 2  | Khilan   | 25  | Delhi     | 15000  |

| 1  | Ramesh   | 32  | Ahmedabad | 20000  |

+—-+———-+—–+———–+——–+

Fetched 6 row(s) in 0.54s

 

Impala – Group By Clause

The Impala GROUP BY clause is employed together with the SELECT statement to rearrange identical data into groups.

Syntax

Following is the syntax of the GROUP BY clause.

select data from table_name Group BY col_name;

Example

Assume we have a table named customers in the database my_db and its contents are as follows −

[quickstart.cloudera:21000] > select * from customers;

Query: select * from customers

+—-+———-+—–+———–+——–+

| id | name     | age | address   | salary |

+—-+———-+—–+———–+——–+

| 1  | Ramesh   | 32  | Ahmedabad | 20000  |

| 2  | Khilan   | 25  | Delhi     | 15000  |

| 3  | kaushik  | 23  | Kota      | 30000  |

| 4  | Chaitali | 25  | Mumbai    | 35000  |

| 5  | Hardik   | 27  | Bhopal    | 40000  |

| 6  | Komal    | 22  | MP        | 32000  |

+—-+———-+—–+———–+——–+

Fetched 6 row(s) in 0.51s

You can get the total amount of salary of each customer using GROUP BY query as shown below.

[quickstart.cloudera:21000] > Select name, sum(salary) from customers Group BY name;

On executing, the above query gives the following output.

Query: select name, sum(salary) from customers Group BY name

+———-+————-+

| name     | sum(salary) |

+———-+————-+

| Ramesh   | 20000       |

| Komal    | 32000       |

| Hardik   | 40000       |

| Khilan   | 15000       |

| Chaitali | 35000       |

| kaushik  | 30000       |

+———-+————-+

Fetched 6 row(s) in 1.75s

Assume that this table has multiple records as shown below.

+—-+———-+—–+———–+——–+

| id | name     | age | address   | salary |

+—-+———-+—–+———–+——–+

| 1  | Ramesh   | 32  | Ahmedabad | 20000  |

| 2  | Ramesh   | 32  | Ahmedabad | 1000|  |

| 3  | Khilan   | 25  | Delhi     | 15000  |

| 4  | kaushik  | 23  | Kota      | 30000  |

| 5  | Chaitali | 25  | Mumbai    | 35000  |

| 6  | Chaitali | 25  | Mumbai    | 2000   |

| 7  | Hardik   | 27  | Bhopal    | 40000  |

| 8  | Komal    | 22  | MP        | 32000  |

+—-+———-+—–+———–+——–+

 

Now again, you’ll get the entire amount of salaries of the workers , considering the repeated entries of records, using the Group By clause as shown below.

Select name, sum(salary) from customers Group BY name;

On executing, the above query gives the following output.

Query: select name, sum(salary) from customers Group BY name

+———-+————-+

| name     | sum(salary) |

+———-+————-+

| Ramesh   | 21000       |

| Komal    | 32000       |

| Hardik   | 40000       |

| Khilan   | 15000       |

| Chaitali | 37000       |

| kaushik  | 30000       |

+———-+————-+

Fetched 6 row(s) in 1.75s

Impala – Having Clause

The Having clause in Impala enables you to specify conditions that filter which group results appear within the final results.

In general, the Having clause is employed alongside group by clause; it places conditions on groups created by the GROUP BY clause.

Syntax

Following is the syntax of the Havingclause.

select * from table_name ORDER BY col_name [ASC|DESC] [NULLS FIRST|NULLS LAST]

Example

Assume we have a table named customers in the database my_db and its contents are as follows −

[quickstart.cloudera:21000] > select * from customers;

Query: select * from customers

+—-+———-+—–+————-+——–+

| id | name     | age | address     | salary |

+—-+———-+—–+————-+——–+

| 1  | Ramesh   | 32  | Ahmedabad   | 20000  |

| 2  | Khilan   | 25  | Delhi       | 15000  |

| 3  | kaushik  | 23  | Kota        | 30000  |

| 4  | Chaitali | 25  | Mumbai      | 35000  |

| 5  | Hardik   | 27  | Bhopal      | 40000  |

| 6  | Komal    | 22  | MP          | 32000  |

| 7  | ram      | 25  | chennai     | 23000  |

| 8  | rahim    | 22  | vizag       | 31000  |

| 9  | robert   | 23  | banglore    | 28000  |

+—-+———-+—–+———–+——–+

Fetched 9 row(s) in 0.51s

Following is an example of using Having clause in Impala −

[quickstart.cloudera:21000] > select max(salary) from customers group by age having max(salary) > 20000;

This query initially groups the table by age and selects the maximum salaries of each group and displays those salaries, which are greater than 20000 as shown below.

20000

+————-+

| max(salary) |

+————-+

| 30000       |

| 35000       |

| 40000       |

| 32000       |

+————-+

Fetched 4 row(s) in 1.30s

 

So, this brings us to the end of blog. This Tecklearn ‘Explanation of Order by Clause , Group by Clause and Having Clause in Impala’ helps you with commonly asked questions if you are looking out for a job in Big Data and Hadoop Domain.

If you wish to learn Impala and build a career in Big Data or Hadoop domain, then check out our interactive, Big Data Hadoop-Architect (All in 1) Combo Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

https://www.tecklearn.com/course/bigdata-hadoop-architect-all-in-1-combo-course/

Big Data Hadoop-Architect (All in 1) Combo Training

About the Course

Tecklearn’s Big Data Hadoop-Architect (All in 1) combo includes the following Courses:

  • BigData Hadoop Analyst
  • BigData Hadoop Developer
  • BigData Hadoop Administrator
  • BigData Hadoop Tester
  • Big Data Security with Kerberos

Why Should you take BigData Hadoop Combo Training?

  • Average salary for a Hadoop Administrator ranges from approximately $104,528 to $141,391 per annum – Indeed.com
  • Average salary for a Spark and Hadoop Developer ranges from approximately $106,366 to $127,619 per annum – Indeed.com
  • Average salary for a Big Data Hadoop Analyst is $115,819– ZipRecruiter.com

What you will Learn in this Course?

Introduction

  • The Case for Apache Hadoop
  • Why Hadoop?
  • Core Hadoop Components
  • Fundamental Concepts

HDFS

  • HDFS Features
  • Writing and Reading Files
  • NameNode Memory Considerations
  • Overview of HDFS Security
  • Using the Namenode Web UI
  • Using the Hadoop File Shell

Getting Data into HDFS

  • Ingesting Data from External Sources with Flume
  • Ingesting Data from Relational Databases with Sqoop
  • REST Interfaces
  • Best Practices for Importing Data

YARN and MapReduce

  • What Is MapReduce?
  • Basic MapReduce Concepts
  • YARN Cluster Architecture
  • Resource Allocation
  • Failure Recovery
  • Using the YARN Web UI
  • MapReduce Version 1

Planning Your Hadoop Cluster

  • General Planning Considerations
  • Choosing the Right Hardware
  • Network Considerations
  • Configuring Nodes
  • Planning for Cluster Management

Hadoop Installation and Initial Configuration

  • Deployment Types
  • Installing Hadoop
  • Specifying the Hadoop Configuration
  • Performing Initial HDFS Configuration
  • Performing Initial YARN and MapReduce Configuration
  • Hadoop Logging

Installing and Configuring Hive, Impala, and Pig

  • Hive
  • Impala
  • Pig

Hadoop Clients

  • What is a Hadoop Client?
  • Installing and Configuring Hadoop Clients
  • Installing and Configuring Hue
  • Hue Authentication and Authorization

Cloudera Manager

  • The Motivation for Cloudera Manager
  • Cloudera Manager Features
  • Express and Enterprise Versions
  • Cloudera Manager Topology
  • Installing Cloudera Manager
  • Installing Hadoop Using Cloudera Manager
  • Performing Basic Administration Tasks Using Cloudera Manager

Advanced Cluster Configuration

  • Advanced Configuration Parameters
  • Configuring Hadoop Ports
  • Explicitly Including and Excluding Hosts
  • Configuring HDFS for Rack Awareness
  • Configuring HDFS High Availability

Hadoop Security

  • Why Hadoop Security Is Important
  • Hadoop’s Security System Concepts
  • What Kerberos Is and How it Works
  • Securing a Hadoop Cluster with Kerberos

Managing and Scheduling Jobs

  • Managing Running Jobs
  • Scheduling Hadoop Jobs
  • Configuring the Fair Scheduler
  • Impala Query Scheduling

Cluster Maintenance

  • Checking HDFS Status
  • Copying Data Between Clusters
  • Adding and Removing Cluster Nodes
  • Rebalancing the Cluster
  • Cluster Upgrading

Cluster Monitoring and Troubleshooting

  • General System Monitoring
  • Monitoring Hadoop Clusters
  • Common Troubleshooting Hadoop Clusters
  • Common Misconfigurations

Introduction to Pig

  • What Is Pig?
  • Pig’s Features
  • Pig Use Cases
  • Interacting with Pig

Basic Data Analysis with Pig

  • Pig Latin Syntax
  • Loading Data
  • Simple Data Types
  • Field Definitions
  • Data Output
  • Viewing the Schema
  • Filtering and Sorting Data
  • Commonly-Used Functions

Processing Complex Data with Pig

  • Storage Formats
  • Complex/Nested Data Types
  • Grouping
  • Built-In Functions for Complex Data
  • Iterating Grouped Data

Multi-Dataset Operations with Pig

  • Techniques for Combining Data Sets
  • Joining Data Sets in Pig
  • Set Operations
  • Splitting Data Sets

Pig Troubleshooting and Optimization

  • Troubleshooting Pig
  • Logging
  • Using Hadoop’s Web UI
  • Data Sampling and Debugging
  • Performance Overview
  • Understanding the Execution Plan
  • Tips for Improving the Performance of Your Pig Jobs

Introduction to Hive and Impala

  • What Is Hive?
  • What Is Impala?
  • Schema and Data Storage
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Querying with Hive and Impala

  • Databases and Tables
  • Basic Hive and Impala Query Language Syntax
  • Data Types
  • Differences Between Hive and Impala Query Syntax
  • Using Hue to Execute Queries
  • Using the Impala Shell

Data Management

  • Data Storage
  • Creating Databases and Tables
  • Loading Data
  • Altering Databases and Tables
  • Simplifying Queries with Views
  • Storing Query Results

Data Storage and Performance

  • Partitioning Tables
  • Choosing a File Format
  • Managing Metadata
  • Controlling Access to Data

Relational Data Analysis with Hive and Impala

  • Joining Datasets
  • Common Built-In Functions
  • Aggregation and Windowing

Working with Impala 

  • How Impala Executes Queries
  • Extending Impala with User-Defined Functions
  • Improving Impala Performance

Analyzing Text and Complex Data with Hive

  • Complex Values in Hive
  • Using Regular Expressions in Hive
  • Sentiment Analysis and N-Grams
  • Conclusion

Hive Optimization 

  • Understanding Query Performance
  • Controlling Job Execution Plan
  • Bucketing
  • Indexing Data

Extending Hive 

  • SerDes
  • Data Transformation with Custom Scripts
  • User-Defined Functions
  • Parameterized Queries

Importing Relational Data with Apache Sqoop

  • Sqoop Overview
  • Basic Imports and Exports
  • Limiting Results
  • Improving Sqoop’s Performance
  • Sqoop 2

Introduction to Impala and Hive

  • Introduction to Impala and Hive
  • Why Use Impala and Hive?
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Modelling and Managing Data with Impala and Hive

  • Data Storage Overview
  • Creating Databases and Tables
  • Loading Data into Tables
  • HCatalog
  • Impala Metadata Caching

Data Formats

  • Selecting a File Format
  • Hadoop Tool Support for File Formats
  • Avro Schemas
  • Using Avro with Hive and Sqoop
  • Avro Schema Evolution
  • Compression

Data Partitioning

  • Partitioning Overview
  • Partitioning in Impala and Hive

Capturing Data with Apache Flume

  • What is Apache Flume?
  • Basic Flume Architecture
  • Flume Sources
  • Flume Sinks
  • Flume Channels
  • Flume Configuration

Spark Basics

  • What is Apache Spark?
  • Using the Spark Shell
  • RDDs (Resilient Distributed Datasets)
  • Functional Programming in Spark

Working with RDDs in Spark

  • A Closer Look at RDDs
  • Key-Value Pair RDDs
  • MapReduce
  • Other Pair RDD Operations

Writing and Deploying Spark Applications

  • Spark Applications vs. Spark Shell
  • Creating the SparkContext
  • Building a Spark Application (Scala and Java)
  • Running a Spark Application
  • The Spark Application Web UI
  • Configuring Spark Properties
  • Logging

Parallel Programming with Spark

  • Review: Spark on a Cluster
  • RDD Partitions
  • Partitioning of File-based RDDs
  • HDFS and Data Locality
  • Executing Parallel Operations
  • Stages and Tasks

Spark Caching and Persistence

  • RDD Lineage
  • Caching Overview
  • Distributed Persistence

Common Patterns in Spark Data Processing

  • Common Spark Use Cases
  • Iterative Algorithms in Spark
  • Graph Processing and Analysis
  • Machine Learning
  • Example: k-means

Preview: Spark SQL

  • Spark SQL and the SQL Context
  • Creating DataFrames
  • Transforming and Querying DataFrames
  • Saving DataFrames
  • Comparing Spark SQL with Impala

Hadoop Testing

  • Hadoop Application Testing
  • Roles and Responsibilities of Hadoop Testing Professional
  • Framework MRUnit for Testing of MapReduce Programs
  • Unit Testing
  • Test Execution
  • Test Plan Strategy and Writing Test Cases for Testing Hadoop Application

Big Data Testing

  • BigData Testing
  • Unit Testing
  • Integration Testing
  • Functional Testing
  • Non-Functional Testing
  • Golden Data Set

System Testing

  • Building and Set up
  • Testing SetUp
  • Solary Server
  • Non-Functional Testing
  • Longevity Testing
  • Volumetric Testing

Security Testing

  • Security Testing
  • Non-Functional Testing
  • Hadoop Cluster
  • Security-Authorization RBA
  • IBM Project

Automation Testing

  • Query Surge Tool

Oozie

  • Why Oozie
  • Installation Engine
  • Oozie Workflow Engine
  • Oozie security
  • Oozie Job Process
  • Oozie terminology
  • Oozie bundle

Got a question for us? Please mention it in the comments section and we will get back to you.

 

0 responses on "Explanation of Order by Clause, Group by Clause and Having Clause in Impala"

Leave a Message

Your email address will not be published. Required fields are marked *