Concept of Fuzzy Logic Systems

Last updated on Oct 24 2021
Goutam Joseph

Table of Contents

Concept of Fuzzy Logic Systems

Fuzzy Logic Systems (FLS) produce acceptable but definite output in response to incomplete, ambiguous, distorted, or inaccurate (fuzzy) input.

What is Fuzzy Logic?

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The approach of FL imitates the way of decision making in humans that involves all intermediate possibilities between digital values YES and NO.

The conventional logic block that a computer can understand takes precise input and produces a definite output as TRUE or FALSE, which is equivalent to human’s YES or NO.

The inventor of fuzzy logic, Lotfi Zadeh, observed that unlike computers, the human decision making includes a range of possibilities between YES and NO, such as −

CERTAINLY YES
POSSIBLY YES
CANNOT SAY
POSSIBLY NO
CERTAINLY NO

The fuzzy logic works on the levels of possibilities of input to achieve the definite output.

Implementation

  • It can be implemented in systems with various sizes and capabilities ranging from small micro-controllers to large, networked, workstation-based control systems.
  • It can be implemented in hardware, software, or a combination of both.

Why Fuzzy Logic?

Fuzzy logic is useful for commercial and practical purposes.

  • It can control machines and consumer products.
  • It may not give accurate reasoning, but acceptable reasoning.
  • Fuzzy logic helps to deal with the uncertainty in engineering.

Fuzzy Logic Systems Architecture

It has four main parts as shown −

  • Fuzzification Module − It transforms the system inputs, which are crisp numbers, into fuzzy sets. It splits the input signal into five steps such as −
LP x is Large Positive
MP x is Medium Positive
S x is Small
MN x is Medium Negative
LN x is Large Negative
  • Knowledge Base − It stores IF-THEN rules provided by experts.
  • Inference Engine − It simulates the human reasoning process by making fuzzy inference on the inputs and IF-THEN rules.
  • Defuzzification Module − It transforms the fuzzy set obtained by the inference engine into a crisp value.
Page 2 Image 1 1
membership functions

The membership functions work on fuzzy sets of variables.

Membership Function

Membership functions allow you to quantify linguistic term and represent a fuzzy set graphically. A membership function for a fuzzy set A on the universe of discourse X is defined as μA:X → [0,1].

Here, each element of X is mapped to a value between 0 and 1. It is called membership value or degree of membership. It quantifies the degree of membership of the element in X to the fuzzy set A.

  • x axis represents the universe of discourse.
  • y axis represents the degrees of membership in the [0, 1] interval.

There can be multiple membership functions applicable to fuzzify a numerical value. Simple membership functions are used as use of complex functions does not add more precision in the output.

All membership functions for LP, MP, S, MN, and LN are shown as below −

Page 3 Image 2 2
graph

The triangular membership function shapes are most common among various other membership function shapes such as trapezoidal, singleton, and Gaussian.

Here, the input to 5-level fuzzifier varies from -10 volts to +10 volts. Hence the corresponding output also changes.

Example of a Fuzzy Logic System

Let us consider an air conditioning system with 5-level fuzzy logic system. This system adjusts the temperature of air conditioner by comparing the room temperature and the target temperature value.

Page 4 Image 3 2
example

Algorithm

  • Define linguistic Variables and terms (start)
  • Construct membership functions for them. (start)
  • Construct knowledge base of rules (start)
  • Convert crisp data into fuzzy data sets using membership functions. (fuzzification)
  • Evaluate rules in the rule base. (Inference Engine)
  • Combine results from each rule. (Inference Engine)
  • Convert output data into non-fuzzy values. (defuzzification)

Development

Step 1 − Define linguistic variables and terms

Linguistic variables are input and output variables in the form of simple words or sentences. For room temperature, cold, warm, hot, etc., are linguistic terms.

Temperature (t) = {very-cold, cold, warm, very-warm, hot}

Every member of this set is a linguistic term and it can cover some portion of overall temperature values.

Step 2 − Construct membership functions for them

The membership functions of temperature variable are as shown −

Page 5 Image 4 2
temperature membership

Step3 − Construct knowledge base rules

Create a matrix of room temperature values versus target temperature values that an air conditioning system is expected to provide.

RoomTemp. /Target Very_Cold Cold Warm Hot Very_Hot
Very_Cold No_Change Heat Heat Heat Heat
Cold Cool No_Change Heat Heat Heat
Warm Cool Cool No_Change Heat Heat
Hot Cool Cool Cool No_Change Heat
Very_Hot Cool Cool Cool Cool No_Change

Build a set of rules into the knowledge base in the form of IF-THEN-ELSE structures.

Sr. No. Condition Action
1 IF temperature=(Cold OR Very_Cold) AND target=Warm THEN Heat
2 IF temperature=(Hot OR Very_Hot) AND target=Warm THEN Cool
3 IF (temperature=Warm) AND (target=Warm) THEN No_Change

Step 4 − Obtain fuzzy value

Fuzzy set operations perform evaluation of rules. The operations used for OR and AND are Max and Min respectively. Combine all results of evaluation to form a final result. This result is a fuzzy value.

Step 5 − Perform defuzzification

Defuzzification is then performed according to membership function for output variable.

Page 6 Image 5 2
defuzzication

Application Areas of Fuzzy Logic

The key application areas of fuzzy logic are as given −

Automotive Systems

  • Automatic Gearboxes
  • Four-Wheel Steering
  • Vehicle environment control

Consumer Electronic Goods

  • Hi-Fi Systems
  • Photocopiers
  • Still and Video Cameras
  • Television

Domestic Goods

  • Microwave Ovens
  • Refrigerators
  • Toasters
  • Vacuum Cleaners
  • Washing Machines

Environment Control

  • Air Conditioners/Dryers/Heaters
  • Humidifiers

Advantages of FLSs

  • Mathematical concepts within fuzzy reasoning are very simple.
  • You can modify a FLS by just adding or deleting rules due to flexibility of fuzzy logic.
  • Fuzzy logic Systems can take imprecise, distorted, noisy input information.
  • FLSs are easy to construct and understand.
  • Fuzzy logic is a solution to complex problems in all fields of life, including medicine, as it resembles human reasoning and decision making.

Disadvantages of FLSs

  • There is no systematic approach to fuzzy system designing.
  • They are understandable only when simple.
  • They are suitable for the problems which do not need high accuracy.

So, this brings us to the end of blog. This Tecklearn ‘Concept of Fuzzy Logic Systems’ blog helps you with commonly asked questions if you are looking out for a job in Artificial Intelligence. If you wish to learn Artificial Intelligence and build a career in AI or Machine Learning domain, then check out our interactive, Artificial Intelligence and Deep Learning with TensorFlow Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

https://www.tecklearn.com/course/artificial-intelligence-and-deep-learning-with-tensorflow/

Artificial Intelligence and Deep Learning with TensorFlow Training

About the Course

Tecklearn’s Artificial Intelligence and Deep Learning with Tensor Flow course is curated by industry professionals as per the industry requirements & demands and aligned with the latest best practices. You’ll master convolutional neural networks (CNN), TensorFlow, TensorFlow code, transfer learning, graph visualization, recurrent neural networks (RNN), Deep Learning libraries, GPU in Deep Learning, Keras and TFLearn APIs, backpropagation, and hyperparameters via hands-on projects. The trainee will learn AI by mastering natural language processing, deep neural networks, predictive analytics, reinforcement learning, and more programming languages needed to shine in this field.

Why Should you take Artificial Intelligence and Deep Learning with Tensor Flow Training?

  • According to Paysa.com, an Artificial Intelligence Engineer earns an average of $171,715, ranging from $124,542 at the 25th percentile to $201,853 at the 75th percentile, with top earners earning more than $257,530.
  • Worldwide Spending on Artificial Intelligence Systems Will Be Nearly $98 Billion in 2023, According to New IDC Spending Guide at a GACR of 28.5%.
  • IBM, Amazon, Apple, Google, Facebook, Microsoft, Oracle and almost all the leading companies are working on Artificial Intelligence to innovate future technologies.

What you will Learn in this Course?

Introduction to Deep Learning and AI

  • What is Deep Learning?
  • Advantage of Deep Learning over Machine learning
  • Real-Life use cases of Deep Learning
  • Review of Machine Learning: Regression, Classification, Clustering, Reinforcement Learning, Underfitting and Overfitting, Optimization
  • Pre-requisites for AI & DL
  • Python Programming Language
  • Installation & IDE

Environment Set Up and Essentials

  • Installation
  • Python – NumPy
  • Python for Data Science and AI
  • Python Language Essentials
  • Python Libraries – Numpy and Pandas
  • Numpy for Mathematical Computing

More Prerequisites for Deep Learning and AI

  • Pandas for Data Analysis
  • Machine Learning Basic Concepts
  • Normalization
  • Data Set
  • Machine Learning Concepts
  • Regression
  • Logistic Regression
  • SVM – Support Vector Machines
  • Decision Trees
  • Python Libraries for Data Science and AI

Introduction to Neural Networks

  • Creating Module
  • Neural Network Equation
  • Sigmoid Function
  • Multi-layered perception
  • Weights, Biases
  • Activation Functions
  • Gradient Decent or Error function
  • Epoch, Forward & backword propagation
  • What is TensorFlow?
  • TensorFlow code-basics
  • Graph Visualization
  • Constants, Placeholders, Variables

Multi-layered Neural Networks

  • Error Back propagation issues
  • Drop outs

Regularization techniques in Deep Learning

Deep Learning Libraries

  • Tensorflow
  • Keras
  • OpenCV
  • SkImage
  • PIL

Building of Simple Neural Network from Scratch from Simple Equation

  • Training the model

Dual Equation Neural Network

  • TensorFlow
  • Predicting Algorithm

Introduction to Keras API

  • Define Keras
  • How to compose Models in Keras
  • Sequential Composition
  • Functional Composition
  • Predefined Neural Network Layers
  • What is Batch Normalization
  • Saving and Loading a model with Keras
  • Customizing the Training Process
  • Using TensorBoard with Keras
  • Use-Case Implementation with Keras

GPU in Deep Learning

  • Introduction to GPUs and how they differ from CPUs
  • Importance of GPUs in training Deep Learning Networks
  • The GPU constituent with simpler core and concurrent hardware
  • Keras Model Saving and Reusing
  • Deploying Keras with TensorBoard

Keras Cat Vs Dog Modelling

  • Activation Functions in Neural Network

Optimization Techniques

  • Some Examples for Neural Network

Convolutional Neural Networks (CNN)

  • Introduction to CNNs
  • CNNs Application
  • Architecture of a CNN
  • Convolution and Pooling layers in a CNN
  • Understanding and Visualizing a CNN

RNN: Recurrent Neural Networks

  • Introduction to RNN Model
  • Application use cases of RNN
  • Modelling sequences
  • Training RNNs with Backpropagation
  • Long Short-Term memory (LSTM)
  • Recursive Neural Tensor Network Theory
  • Recurrent Neural Network Model

Application of Deep Learning in image recognition, NLP and more

Real world projects in recommender systems and others

Got a question for us? Please mention it in the comments section and we will get back to you.

 

 

0 responses on "Concept of Fuzzy Logic Systems"

Leave a Message

Your email address will not be published. Required fields are marked *